缓存相关

为什么要用缓存?

对于一个服务其性能瓶颈往往都在DB,传统关系型存储尤甚。我们在创建表的时候,并不会未所有的字段创建索引,这意味着如果我们需要读取非缓存数据就要从磁盘拿数据。这个过程至少需要十几毫秒的时间。而缓存往往是基于内存的,这要比DB读数据快两个数量级。这是我们用缓存的根本原因原因。

缓存穿透

缓存穿透是说访问一个缓存中没有的数据,但是这个数据数据库中也不存在。普通思路下我们没有从数据库中拿到数据是不会触发加缓存操作的。这时如果是有人恶意攻击,大量的访问就会透过缓存直接打到数据库,对后端服务和数据库做成巨大的压力甚至宕机。

解决方案:
缓存空对象。如果缓存未命中,而数据库中也没有这个对象,则可以缓存一个空对象到缓存。如果使用Redis,这种key需设置一个较短的时间,以防内存浪费。

缓存预测。预测key是否存在。如果缓存的量不大可以使用hash来判断,如果量大可以使用布隆过滤器来做判断。

缓存并发

缓存并发这个场景很容易解释:多个客户端同时访问一个没有在cache中的数据,这时每个客户端都会执行从DB加载数据set到缓存,就会造成缓存并发。

解决方案:

缓存预热。提前把所有预期的热数据加到缓存。定位热数据还是比较复杂的事情,需要根据自己的服务访问情况去评估。这个方案只能减轻缓存并发的发生次数不能全部抵制。

缓存加锁。 如果多个客户端访问不存在的缓存时,在执行加载数据并set缓存这个逻辑之前先加锁,只能让一个客户端执行这段逻辑。

更新缓存

思路是先更新数据库,更新成功之后再令缓存失效。还有一种方式是先失效缓存,然后在更新数据库。我们来对比一下这两种方式的不同。

首先,来看后一种。设想一种情景,一个客户端发起更新操作,当执行了缓存失效。这时一个读取操作进来,发现缓存没有数据然后从数据库拿数据并放到缓存。更新操作继续更新数据库。这时缓存里已经缓存了脏数据。

那么看一下第一种这个操作:A客户端发起更新操作,B客户端发起读操作,并且这时缓存恰好失效,然后它从数据库加载数据(老数据)。A的更新操作完成失效缓存,这时B读取的客户端把老数据set到缓存。这有这种情况下才会出现脏数据,但是这概率已经非常小了。

评论 ( 0 )
最新评论
暂无评论

赶紧努力消灭 0 回复